

Data in Astronomy

Data in astronomy

Machine learning methods for astronomical data

Supervised learning: Dense neural network regression

- Used a neural network to calculate the orbital degradation factor in the search for binary pulsars in radio data.
- Once trained, NN provides incredibly fast calculations, which are required in population synthesis studies.

$$\gamma_{2m}(\alpha_a, \alpha_v, T) = \frac{1}{T} \left| \int_0^T \exp\left[\frac{\mathrm{i}m\omega_p}{c} \left(r_l - r_{l0} - \alpha_a t^2 - \alpha_v t\right)\right] \, \mathrm{d}t \right|$$

Machine learning search for variable stars

- Trained a broad range of ML algorithms on 168 objects (OGLE) using 18 variability indices.
- OGLE-II results: 205 candidates, of which 178 are real, and 13 are new discoveries.

Туре	LMC_SC19	LMC_SC20
Eclipsing binaries	36	54
Variable red giants (L/M/SR/ELL)	54	52
RR Lyrae-type variables	56	26
Cepheids (classical and Type II)	17	20
Blue irregular variables (GCAS/BE/QSO)	22	13
δ Scuti stars	1	3
Total	186	168

Index	Reference
Weighted standard deviation – σ	Kolesnikova et al. (2008)
Clipped $\sigma - \sigma_{clip}$	Appendix A1
Median abs. deviation – MAD	Zhang et al. (2016)
Interquartile range – IQR	Sokolovsky et al. (2017)
Reduced χ^2 statistic – χ^2_{red}	de Diego (2010)
Robust median statistic – RoMS	Rose & Hintz (2007)
Norm. excess variance $-\sigma_{NXS}^2$	Nandra et al. (1997)
Norm. peak-to-peak amp. $-v$	Sokolovsky et al. (2009)
Autocorrelation $-l_1$	Kim et al. (2011)
Inv. von Neumann ratio – $1/\eta$	Shin et al. (2009)
Welch–Stetson index – I_{WS}	Welch & Stetson (1993)
Flux-independent index – $I_{\rm fi}$	Ferreira Lopes et al. (2015)
Stetson's J index	Stetson (1996)
Time-weighted Stetson's J _{time}	Fruth et al. (2012)
Clipped Stetson's J _{clip}	Appendix A2
Stetson's L index	Stetson (1996)
Time-weighted Stetson's L _{time}	Fruth et al. (2012)
Clipped Stetson's L _{clip}	Appendix A2
Consec. same-sign dev. – CSSD	Shin et al. (2009)
S_B statistic	Figuera Jaimes et al. (2013)
Excursions – E_x	Parks et al. (2014)
Excess Abbe value – $\mathcal{E}_{\mathcal{A}}$	Mowlavi (2014)
Stetson's K index	Stetson (1996)
Kurtosis	Friedrich, Koenig & Wicenec (1997
Skewness	Friedrich et al. (1997)

Transfer learning for classification

- Train a deep convolutional neural network to detect fast radio bursts, a class of radio transients.
- Bulk of neural network design leveraged image classifiers pre-trained on ImageNet like *ResNet50, VGG16, DenseNet.*

Agarwal et al., 2020

Transfer learning with classification

Classification with autoencoders

- Design a convolutional auto-encoder to classify radio AGN into six types: FR I/II, FR I/II-like bent-tailed, X-shaped, ring-like
- Clever use of augmentation to increase their training set.

AGN Type	Label	^a N _{Trn+Val}	^b N _{Tst}	^c R _{Aug}	^d N _{Aug}	^e Branch
compact	1	302	75	64	19,328	1
FRI	2	169	42	29	4901	1, 2, 3
FRII	3	345	86	14	4830	1, 2, 3
BT	4	245	62	20	4900	1, 2, 4, 5
XRG	5	67	17	37	2479	1, 2, 4, 6
RRG	6	26	6	94	2444	1, 2, 4, 6
Total		1154	288		38,882	

Ma et al., 2019

Classification with autoencoders

Classification with autoencoders

Ma et al., 2019

(a)

More interesting applications of ML to astronomy:

- More applications:
 - Bayesian neural networks
 - <u>Distribution learning with normalizing flows.</u>
 - <u>Time series analysis with neural networks.</u>
 - LLMs in astronomy? <u>AstroLlama</u>, <u>Slack chatbots grounded in arXiv</u>, <u>survey of</u> <u>ChatGPT and LLM use by astronomers</u>. (also: next week's colloquium speaker)
 - Outlier detection
- Many algorithms already available in Python:
 - <u>Scikit-learn</u>
 - <u>Tensorflow</u>
 - Keras for deep learning.